Total Pageviews

Tuesday, September 9, 2014

Stress and Disease

The HPA axis is involved in the neurobiology of mood disorders and functional illnesses, including anxiety disorder, bipolar disorder, insomnia, posttraumatic stress disorder, borderline personality disorder, ADHD, major depressive disorder, burnout, chronic fatigue syndrome, fibromyalgia, irritable bowel syndrome, and alcoholism.[1]

Antidepressants, which are routinely prescribed for many of these illnesses, serve to regulate HPA axis function.[2]

Experimental studies have investigated many different types of stress, and their effects on the HPA axis in many different circumstances.[3]

Stressors can be of many different types—in experimental studies in rats, a distinction is often made between "social stress" and "physical stress", but both types activate the HPA axis, though via different pathways.[4]

Several monoamine neurotransmitters are important in regulating the HPA axis, especially dopamine, serotonin and norepinephrine (noradrenaline). There is evidence that an increase in oxytocin, resulting for instance from positive social interactions, acts to suppress the HPA axis and thereby counteracts stress, promoting positive health effects such as wound healing.[5]

The HPA axis is a feature of mammals and other vertebrates. For example, biologists studying stress in fish showed that social subordination leads to chronic stress, related to reduced aggressive interactions, to lack of control, and to the constant threat imposed by dominant fish. Serotonin (5HT) appeared to be the active neurotransmitter involved in mediating stress responses, and increases in serotonin are related to increased plasma α-MSH levels, which causes skin darkening (a social signal in salmonoid fish), activation of the HPA axis, and inhibition of aggression. Inclusion of the amino acid L-tryptophan, a precursor of 5HT, in the feed of rainbow trout made the trout less aggressive and less responsive to stress.[6]

However, the study mentions that plasma cortisol was not affected by dietary L-tryptophan. The drug LY354740 (also known as Eglumegad, an agonist of the metabotropic glutamate receptors 2 and 3) has been shown to interfere in the HPA axis, with chronic oral administration of this drug leading to markedly reduced baseline cortisol levels in bonnet macaques (Macaca radiata); acute infusion of LY354740 resulted in a marked diminution of yohimbine-induced stress response in those animals.[7]

Studies on people show that the HPA axis is activated in different ways during chronic stress depending on the type of stressor, the person's response to the stressor and other factors. Stressors that are uncontrollable, threaten physical integrity, or involve trauma tend to have a high, flat diurnal profile of cortisol release (with lower-than-normal levels of cortisol in the morning and higher-than-normal levels in the evening) resulting in a high overall level of daily cortisol release. On the other hand, controllable stressors tend to produce higher-than-normal morning cortisol. Stress hormone release tends to decline gradually after a stressor occurs. In post-traumatic stress disorder there appears to be lower-than-normal cortisol release, and it is thought that a blunted hormonal response to stress may predispose a person to develop PTSD.[8]

It is also known that hypothalamic-pituitary-adrenal axis (HPA) hormones are related to certain skin diseases and skin homeostasis. There is evidence shown that the HPA axis hormones can be linked to certain stress related skin diseases and skin tumors. This happens when HPA axis hormones become hyperactive in the brain.[9]

-----

1. Spencer RL, Hutchison KE (1999). "Alcohol, aging, and the stress response". Alcohol Research & Health 23 (4): 272–83. PMID 10890824.

2. Pariante CM (August 2003). "Depression, stress and the adrenal axis". Journal of Neuroendocrinology 15 (8): 811–2. doi:10.1046/j.1365-2826.2003.01058.x. PMID 12834443.

3. Douglas AJ (March 2005). "Central noradrenergic mechanisms underlying acute stress responses of the Hypothalamo-pituitary-adrenal axis: adaptations through pregnancy and lactation". Stress 8 (1): 5–18. doi:10.1080/10253890500044380. PMID 16019594.

4. Engelmann M, Landgraf R, Wotjak CT (2004). "The hypothalamic-neurohypophysial system regulates the hypothalamic-pituitary-adrenal axis under stress: an old concept revisited". Frontiers in Neuroendocrinology 25 (3–4): 132–49. doi:10.1016/j.yfrne.2004.09.001. PMID 15589266.

5. Detillion CE, Craft TK, Glasper ER, Prendergast BJ, DeVries AC (September 2004). "Social facilitation of wound healing". Psychoneuroendocrinology 29 (8): 1004–11. doi:10.1016/j.psyneuen.2003.10.003. PMID 15219651.

6. Winberg S, Øverli Ø, Lepage O (November 2001). "Suppression of aggression in rainbow trout (Oncorhynchus mykiss) by dietary L-tryptophan". The Journal of Experimental Biology 204 (Pt 22): 3867–76. PMID 11807104.

7. Coplan JD, Mathew SJ, Smith EL, et al. (July 2001). "Effects of LY354740, a novel glutamatergic metabotropic agonist, on nonhuman primate hypothalamic-pituitary-adrenal axis and noradrenergic function". CNS Spectrums 6 (7): 607–12, 617. PMID 15573025.

8. Miller GE, Chen E, Zhou ES (January 2007). "If it goes up, must it come down? Chronic stress and the hypothalamic-pituitary-adrenocortical axis in humans". Psychological Bulletin 133 (1): 25–45. doi:10.1037/0033-2909.133.1.25. PMID 17201569.

9. Kim JE, Cho BK, Cho DH, Park HJ (July 2013). "Expression of hypothalamic-pituitary-adrenal axis in common skin diseases: evidence of its association with stress-related disease activity". Acta Dermato-venereologica 93 (4): 387–93. doi:10.2340/00015555-1557. PMID 23462974.


Researched by:
facebook.com/manna.goods
myspace.com/mannagoods
pinterest.com/mannagoods4u
twitter.com/mannaglide


-----
Post a comment.
http://ow.ly/1z4j1b

No comments:

Post a Comment